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EXPANSION IN PROBLEMS OF CONTROL OF SYSTEHS WITH EQUATIONS 
OF THE PARABOLIC TYPE* 

v. I. TSURKGV 

The method of decomposition based on the introduction of macro-variables is applied 
for controlling systems with distributed parameters, which are defined by parabolic 
type equations in partial derivatives. Basic statements are presented for the 
iterative process: optimality criterion for the intermediate solution and local 
monotonicity with respect to the functional of the input problem. 

The problem of optimal heating for a system of J infinite plates of width l,(j~[i :Jl) 
is considered. The temperature of each plate z,(z,,t) with respect to width and time satis- 
fies the heat conduction equation 

Os, &j. ') / at-fls, (31. t>lazJ@ = fJ (zJ,t) E CI, {[o, l,l x 10, T]), t > 0, 0 < *J < 1J (1) 

Initial temperature distributions are specified, and the heat exchange at the platebound- 
aries conforms to Newton's law 

lim zJ (zJ, t) = ‘PI @J) E CO 10, IJl (2) 

ikJ*;t) / ibJ = -PI” h,l’ (t) - ZJ (0, t)] (3) 

as, (111 t) / az, ‘= @t bjJ* (t) - ZJ (ZJ, t)i 

(f%’ -f- @J’)‘> 0, bJ” > 0, PI’ > o 

we introduce control vectors &J(t) = {uJ’(t), . . .) &J’(t)} which define the heating medium 
temperature in terms of I-dimensional vectors bJk(t) - {bJ"(t), , . ., bJrk(t)} (k! h &2) 

,,,' (t) = bJ” (t)uJ (t), k = 1, 2 (4) 

The controls are subject to the following constraints: 

8 6 “J @) f uJ @) (5) 

g& 0) uj 0) -cj'(t)sj (0, 5)-c?(t) sj(lj* t)l6; m (t) (6) 

where dj(t) are DIatdCeS Of dimension R X i; cJk(t), m(t) and aJ(t) are, reSpWtiVely, R-and 
I-dimensional vectors. 

Constraints (5) apply to each individual plate, while (6) is the binding condition for 
the system as a whole. The meaning of inequality (6) can be interpreted as follows. Let the 
control vector ccqonsnts uJ = {uJ', . . ..u+} for each fixed Jo Ii :J] define components of 
consumed fuel required for maintaining the heating media temperature. The system sustains 
losses in the course of consumption of fuel canponents and has inducers for maintaining the 
highest possible temperature at the boundary of plates and media. The difference between such 
losses and inducers expressed in the same measurements is positive and lidted, which is specf- 
fied by vector m(t) in the right-hand side of (6). The components of matrices d,(t) and of 
vectors bJ’,cJ”(t) (k - 1,2) have then the meaning of respective proportionality coefficients, 
and the concrete meaning of condition (6) is finally elucidated. 

For the above formulation /of the problem/ a typical functional is of the form 

- ej (tj)]*d&j* max (7) 

where eJ(zJ) am? giva fmctions On sepats 10, ZJI, j E ii : Jl. 
It is assumed that canponenta big (t), dp (t), ctrk (t), mr(t),aj(t) are bounded measurable func- 

tions on segment IO, T], and el @J) = r, IO, ZJt- We seek control vectors 
fl :Jt and their respective temperature functions 

uJ @) E &ax 10, Tl, f i? 
2J (sJ, t), f E fi : J] which #IeW&ze functional 
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(7) and satisfy constraints (4)- (6) and, also, Eqs.(l) of heat conduction together with in- 
itial and boundary conditions (2) and (3) in the sense of the theory of distribution. 

The dimension of the input problem with respect to controls is J x I. Reduction to 
problems of lower dimensions on the basis of introduction of macrocontrols proposed in /l/ is 
indicated subsequently. The construction is based on the principle of duality for extremal 
problems in Banach spaces /2/ to which the input and all intermediate problems are reduced 
with the use of Green's function in the method of decomposition. The validity of duality 
theorems for problems of control with distributed parameters of the type considered here with 
conditions bfk (t), dp (t), c,’ (t) > 0 satisfied was proved in Ter-Krikorov's paper (*). 

The iterative process is constructed as follows. We introduce macrocontrols and weight 
functions 

U’(t)=~u;(t), iE[l:z], uzi (t) = 
u .i (t) 

j=l 

-&, E[l: J], i~[l:I] 

We fix aj’(t) and obtain a problem with macrocontrols by substituting in the input prob- 
lem for (4)- (61, respectively, the relationships (8)- (10) 

qjk (t) = $sl Bik (t) U’ (t), Bjik (t) = bj’” (t) .j’ (t) 

O<uaj’(t), Ui(t)&aji(t) 

$ D1(~)U’(t)-_~lI~,‘(t)~j(O, t)+Cj2(t)Zj(zjr t)I<m(t), n’(t)=jidj(t)aji(t) 
i=l 

(9) 

(10) 

For the problem with macrocontrols we consider its conjugate /3/ 

-8Wj (xj, t) / at - a2Wj (xj, t) / 3X*2 e 0 I lim WI (xl, t) c -2 IZj (xjv T) - ej (xj)l 
t-T--O 

awj (0, t) / aXj c -_Yj’ (t) + fi;Wj (0, t) aWj (Zj, t) / dXj c yp (t) - pj’wj (ZjT t) 

Tjk (t) = 6 (t)Cjk (t); k = 1, 2, j E 11 : Jl 

6 (t) D” (t) + $$ [- fij’Wj (0, 1) Hj” (t) - fij2Wj (ljl t) Bju (t) f Uji (t) pj’(t)] > 0, i E [1 : Zl 
j=l 

(11) 

htt)>O, pi(t) >O, j E[I: Jl 

i (T Pj (z) aj (z) d 
j=1 d 

r;~~j(ij.O)‘~j(~j)d5,+jiiwj(5;,r)t(ij,i)dEidr)+5S(r)~,~(~)drfmiil 
0 Cl 0 

where R-and z-dimensional vectors of dual variables 6 (t) and p,(t), j E 11 : Jl, respectively, 

are introduced together with dual functions Wj (Xj, t), j E [I : Jl. 
Let unique optimal solution of the problem with macrocontrols cl)- (3), (8)- (lo), and 

(7) p(t)> 0, zj” (xj, t) and of its conjugate (11) 6" (t), pi0 (t), wj’(xj, t) have been determined for 

specified functions ali (t) . We formulate problems for individual plates, which for each j6Z 

[I :J] are defined by formulas (l)-- (5), and add to functionals in (7) the terms 

- f 6" (T) [dj (Z) uj (7) - cjl (T) zj (0, T) - Cj” (T) Zj (lj, T)] dT 
0 

Let ul* (t) (j E [I: Jl be bounded measurable optimal solutions of problems for individual 

plates to which correspond temperature distributions zj* (Xjr t). We determine controls U]iO (t) = 

ai(t)Ui”(t), introduce, as in /l/, functions ai*( and pass to the next following iteration 

in conformity with that paper. We obtain 

CLji(tl pj) = [Uj’” (2) + Pj t”l“ (t) - Ujio (t))] [ i (Uj'"(t) f Pj t"ji* it) - uji”(t)) 1-l 7 0 Q pi < 1, i E 11 : Jl 
id 

*) Ter-Krikorov A.M., A problem of optimal heating. Proc. All-Union Conf. Problems of con- 
trol of processes in continuous media with separation and combustion. Kiev, June, 1979. 
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Substituting the fixed weighting functions in conformity with the above ,relationintOthe 
input problem (l)-(7), we obtain a problem with macrocontrols whose functional optimum value 
$(p,) is a function of parameter We have the problem of maximizing $@I) for p)E IO, 

. If the maximum is attained in tl% problem for some pj"(I~ 11 :J)), the weight functions 
for the next step of the iteration process is calculated using the above relation in which pi' 

are substituted for pi . 
Thus at each iteration step a problem with macrocontrols containing I variables related 

to controls, as well as J probkms for individual plates with 1 control variables. Finally 

we have the problem of maximization with J parameters pj. 
Let us formulate th optimality criterion for the input problem of the admissible inter- 

mediate solution z+' (t), ri @jr t). The respective condition consists of satisfying the equalit- 
ies 

(12) 

0 

Let vj* (t), u,* (zl,t) 0 E 11 : Jl) .be theoptimal solu- 
tions of dual problems for each plate. Then the set S'(t), VI* (t), VI* (21, f) is an admissible 
solution of the reciprocal of the input problem. The criterion of optimalityofsolution u;(t), 
q”(q,t) admissible for (l)-- (7) is the equality of functionals of the pair of conjugate prob- 
lems 

Equality of the optimal values of functionals of pairs of conjugate problems for indivi- 
dual plates yields 

nj= f [zj*(Ej, ~)-ej(t))*ej -f~(,)Idj(r) uj*(r)-cj%j* (0, r)-Cj’(~)~j*(~j, T)ldT 
D II 

The last two relations imply (12). When solution ~1' (1), 2; (z,, t) 0' E [i : Jl) is not optimal 
for the input problem, (12) is satisfied as a "strictly greater" inequality. 

Monotonicity with respect to the functional of the iterative method is established in con- 
formity with the scheme in /l/. We set pj = p(i~ [I :J]) and determine the derivative with 
respect to p at point p = 0 of the optimum value of functions g"(p) of the problem with mac- 
rocontrols. For this we differentiate the Lagrange functional taking into account the formula 
for k,"(t, O)/ 6'~ and the dependence of z,"(zl,t) on p. After a number of transformations 
with allowance for the penultimate constraints in (11) which by virtue of p(l)> 0 are sat- 
isfied as strictly valid equalities, we finally obtain 

jlWjo (0, T) bj’ (T) + fij’Wj’(Zj, Z) bj’ (T) - 6” (T) dj (t) - pj” (z)] U* (2) d% (13) 
j-10 

Then by integrating bypartswe transform the equality 

J ‘jT 

*Wj (Ej3 Z)/@j'l X [Ed* (Ejv t, - zj" (Ejt %)I Gj dT = O 

and finally obtain 

i: {- 't 2 Izjo (&j* T) - ej Gj)l Izj* (Ejt T) - 2; Rj* T)14j - 
j-1 i 

i [(Bj~t(ot z) bj'(r) + Bj"Wf(~j* z) b?(f)) (UP (z)-uj'(z))+ 

0 

6" (7) (Cj' (T) (Zj* ('AT) - Z; (0, f)+Cj” (r) (Zj* (ljv T)-z~ (lj* Z))] d’) 

(14) 

Adding to the right-hand side of (13) the expression in (14) together the following terms: 
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which by virtue of conditions of supplementary nonrigidity are zero, and finally obtain 

Q+= Z $ ([zj* (ET) -ej(E~)I~-Z[zjb(Sjr T)-ej(kJI 
j=l 0 

X [Zj*($jv T)-~zj"(&l Z’)l-_[zj”&y T)-ej(Sj)l’} d& 

where nt> 0 is the left-hand side of (121; % > 0 by virtue of 151, and m9 > 0 by virtue 
of convexity of functional (7). 

Thus (g"(0)) >O which implies the monotonicity of the iterative method of expansion with 
respect to the functional. 

The preceding investigation relates to the problem of control of plate heating defined by 
heat conduction equations that are one-dimensional with respect to space variables with linear 
constraints and a quadratic functional. However, using the formalism of /2/, it is p0ssibl.e 
to extend the decomposition method construction to more general systems with distributed nara- 
meters of the parabolic type in which appear multid~ensional space variables and, also, con 
vex constraints and a functional. 

The example described below admits analytic investigation of all constructions of the 
decomposition method. Consider the linear problem 

where constants nI, +, 8, yl,ya are positive, and vz>yX is set for definiteness, 
conjugate of (15) is of the form 

-al/, (5, t) / et - a*y& f5, tvale = 0, --ayr fz, tjlat - a*ys c5, 2)ia;~ = 0 
II (G 11 = Y1* Ys fr, 2) = YP, 2 E lo, II 
8~~ (0, t) I ax = yl (0, 0, ay, (0, tw = y2 to, t) 

ay, (4 Q/al: = -y, (1, t), ay, (2, t) / a2 = -yl, (1, t) 

*I fr) - 111 (0, t) - Yl (& 0 + x w > 0, ** (t) - yci (0, t) - y, (I, t)f x (1) > 0 

t 

The problem 

(16) 

The first four pairs of relations in (16) are integrated independently. Using the traditional 

technique of the Fourier method for mixed problems we obtain for optimal functions Yloz, t) = 
y1 e (z, t), va (x, 1) = yp e (z, t) , where o(x,t) is some function symmetric about the straight line I= 
lf2 which can be represented in the form of series (not shown here). It is importanttopoint 

out the existence of T>O such that for all O< t< T,O<z< I the inequality w (z, t)>, 0 is 
satisfied. 

To find the optimal controls of problem (15) we apply the Pontriagin principle of maximum 

/2/. Introducing Pontriagin's function II we obtain the problem 

II = 20f0, t) iYlUl 0) + y?& 0)1--t max, UI 0) + ttg ftf Q 8, 0 4 a1 ft1 < %. 0 < uz (tf d Rs (17) 
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Let us consider the s&mplest particular case of v<~,v<% in which the 6oluti0n of 
problem (17) is h(t) = 0, ut (t) = v. This after integration of the first four pairs of relations 
in (15), applying the indicated Fourier method, we obtain optimal distributions 3 (% t) - 0, 

*(s, t) = 84 (2, t). The optimal value of the functional of problem (15) is of the form f=ov*A, 
where A is a constant quantity. 

The problem with macrocontrols differs from (15) by the following respective relations: 

%(o, t) Ia2 = -1% 0) u 0) - zI (0. 01, ar, (0, t)/a+ ‘4% (t) (I (t) -r, (0, 01 

axI (I, t) I a2 = 1% (t) u (t) - _I (2, t)l, ah (I, 0/a+ = 1% wcl (t) - r, (1, 01 

a, (1) u (C) i n,, cr, 0) ITI (0 < 49 u (t) d v* u 0) & o 

We assume the weights ~~,a,>O,a,+cr,= i to be time independent. Solution of the problem 
with macrocontrols is then V(t)= v and, moreover, g"(&1,e,)=(s~~~+o& XVA. If the dual 
problem is considered in conjunction with that containing macrocontrols, we again obtain after 
independent integration tolo (z, t) = 0~0 (t. t), wlo (z, 2)=7,0X (z, t), o (0, t) = o (I, t)=o (t). The duality con- 
dition for this problem yields in conformity with (11) 2(~~l+qy,)o(t)--~,o(t) -+~)~~((t)-_((t)= O. 
Since nl" (r) = ~0 (t) = 0. hence Ep (t) = 2 (%% + cr,v,)o (1). 

The local problem for the first plate is defined by the first five relations of (15) and 
the functional 

1 T 

aS4(~.T)df-_2(aiyt+~~)o(r)ul(r)dr-mar 

0 0 

Using Pontriagin's principle of maximum we reduce this problem to the following: 

2 Iltl - (sly1 + %~,)I~ 0) 4 0) = 4 (VI - YIN WI 0) - mm, 0 Q % 0) d n1 

Since A-v,<O, its solution is 4* (1) = 0. The analogous second local problem yields 

01 (vr -n) 0 (:)lcr (G -mar , 0 e 4 0) < h 

hence because of v,-_A>O we have 4' (t) = at. 
Then in conformity with constructions of the decomposition method we calculate the weight- 

ing function in terms of parameters hr Pl. We have 

Substitution of these weights into the previously determined formula for go&s,) results 
in the maximization of the following linear-fractional function. 

$ (Pi* fM = [YfV (1 - PI) + YaW + 7% (% - Whl~ [v - WI% + (4 - W) PA 

on the unit square with respect to I%* Pa. 
It can be shown that the maximum of this function is attained when p1= i and any p, along 

segment [O, i], with al" (~1'0, P,") = 0, 4' (pl", p,=) = D. Thus the solution of problem (15) is obtained 
in one step. 

Let us check the fulfilment of the optimality criterion (12) in the considered here case. 
We have 

%=&*(Fv T)%+ fvQ(r)dr 
4 (ti*+Q)d0(4d*--y, j~~'(e.r)dF-AS~'(~,T)~=~~+ 

0 0 0 0 0 

(V - np) f P(?)d?- a,y,vA - a~%uA 
0 

The constant A is determined using the equality of optimal values of functionals of con- 
jugate pair of problems with macrocontrols 

j &(r)dr = v (aln+ar%)A 
0 

Taking into account the last equality we obtain n,= n,oc,(y, --%)A, and, consequently, when 
~r,=0 we have q=O. 

Let us consider the particular case of V<Q*n,<V, in which, as previously, we have the 
optimal solution of problem (15), a(t)= O-II,,, a,(t)= 4. Solution of the conjugate problem of 
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the problem with macrocontrols depends on the relation between the quantities I and n&z* 
where a, is the initial constant weighting factor. Let the following inequality be satis- 
fied: 

Then, as before, we obtain U" (1) = E', ?h" (r) = neO(t) = 0, 6" (#) = 2 (cc,y, + a$y*) e(t) andthelocalproblems 
yield u1* (t) = 0, l+'(t)= "8. We have the problem of maximizing the same function g"(p,,&), as in 
the previous case, with respect to p,,pr! in the unit square, but when p$"= 1 condition (18) 
is violated. We consider a, as a function of pr of the form a*&)= %i(i -ag,)when P*=O, 
and seek point pl* at which condition (18) is not satisfied. We have the equation a, (pr) = n,!s 
from which we obtain pr* = (n, -u.& /IQ%. p~*f[O, il. It is important to note that point (&*,O) 
defines the optimal control uXO= tr,(p,*,O) tl",+O = a, (pl*,O)OO and is, also, the optimal solution 
of problem (18). Other particular cases of this example are similarly investigated. 
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